JEE Main 2026 Session 1-Mathematics

Relations and Functions

Q1. Among the relations

$$S = \left\{ (a, b) \colon a, b \in \mathbb{R} - \{0\}, 2 + \frac{a}{b} > 0 \right\} \text{ and}$$

$$T = \left\{ (a, b) \colon a, b \in \mathbb{R}, a^2 - b^2 \in \mathbb{Z} \right\},$$

- (1) neither S nor T is transitive
- (2) S is transitive but T is not
- (3) T is symmetric but S is not
- (4) both S and T are symmetric

Ans. (3)

Basic Definitions of Relations

A relation R on a set A is said to have the following properties:

- Symmetric: If $(a, b) \in R \Rightarrow (b, a) \in R$
- Transitive: If $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$
- Reflexive: If (a, a) ∈ R for all a ∈ A (not asked in this question)

Step-by-Step Solution

Analyzing Relation S

 $S = \{(a, b) \in \mathbb{R} \setminus \{0\} \times \mathbb{R} \setminus \{0\} : 2 + a/b > 0\}$ Let's test if S is symmetric:

Choose a = 1, b = -1: $2 + 1/(-1) = 1 > 0 \Rightarrow (1, -1) \in S$ Now check (-1, 1): $2 + (-1)/1 = 1 > 0 \Rightarrow (-1, 1) \in S$ \Rightarrow S might seem symmetric

Try a = -5, b = 2: $2 + (-5)/2 = -0.5 < 0 \Rightarrow (-5, 2) \notin S$ Now test (2, -5): $2 + 2/(-5) = 2 - 0.4 = 1.6 > 0 \Rightarrow$ $(2, -5) \in S$ So $(2, -5) \in S$ but $(-5, 2) \notin S \Rightarrow S$ is not symmetric \mathbf{X}

Now test if S is transitive:

Assume $(a, b) \in S$ and $(b, c) \in S$. Does it imply $(a, c) \in S$?

Try a = 1, b = -1, c = -2:

$$(1, -1): 2 + 1/(-1) = 1 > 0 \Rightarrow \in S$$

 $(-1, -2): 2 + (-1)/(-2) = 2.5 > 0 \Rightarrow \in S$
 $(1, -2): 2 + 1/(-2) = 1.5 > 0 \Rightarrow \in S \Rightarrow \text{ In this case transitive}$

Now try a = -5, b = 2, c = -1: (-5, 2): $2 + (-5)/2 = -0.5 \Rightarrow \notin S \Rightarrow$ Transitivity fails as condition is not preserved in general \Rightarrow S is not transitive

Analyzing Relation T

$$\begin{split} T &= \{(a,b) \in \mathbb{R} \times \mathbb{R} : a^2 - b^2 \in \mathbb{Z}\} \\ \text{Check symmetry:} \\ \text{If } (a,b) \in T \Rightarrow a^2 - b^2 \in \mathbb{Z} \\ \text{Then } (b,a) \Rightarrow b^2 - a^2 = -(a^2 - b^2) \in \mathbb{Z} \text{ since integers are closed under negation} \\ \Rightarrow T \text{ is symmetric } \checkmark \end{split}$$

Check transitivity:

Assume (a, b) \in T and (b, c) \in T Then $a^2 - b^2 \in \mathbb{Z}$ and $b^2 - c^2 \in \mathbb{Z}$ Add: $a^2 - b^2 + b^2 - c^2 = a^2 - c^2 \in \mathbb{Z} \Rightarrow (a, c) \in T$ \Rightarrow T is transitive \checkmark

Conclusion

- S is neither symmetric nor transitive $oldsymbol{ imes}$
- T is symmetric ✓ (and also transitive, though not asked)

Therefore, the correct answer is:

✓ (3) T is symmetric but S is not

Q2. If the domain of the function $f(x) = \frac{[x]}{1+x^2}$, where [x] is greatest integer $\leq x$, is [2,6), then its range is

(1)
$$\left(\frac{-}{26}, \frac{-}{5}\right]$$

(2) $\left(\frac{5}{37}, \frac{2}{5}\right] - \left{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}\right}$
(3) $\left(\frac{5}{37}, \frac{2}{5}\right]$
(4) $\left(\frac{5}{26}, \frac{2}{5}\right] - \left{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}\right}$