JEE Main 2026 Session 1-Physics

Units and Measurements

Q1. A screw gauge has 50 divisions on its circular scale. The circular scale is 4 units ahead of the pitch scale marking, prior to use. Upon one complete rotation of the circular scale, a displacement of 0.5 mm is noticed on the pitch scale. The nature of zero error involved and the least count of the screw gauge, are respectively:

- (1) Positive, 0.1 mm
- (2) Positive, 0.1μ m
- (3) Positive, 10μ m
- (4) Negative, 2μ m

Ans.[3]

Sol. =
$$L.C = \frac{0.5}{50}$$
 mm = 1×10^{-5} m = 10μ m

Q2. The workdone by a gas molecule in an

isolated system is given by, $W = \alpha \beta^2 e^{-\frac{x^2}{\alpha kT}}$, where x is the displacement, k is the Boltzmann constant and T is the temperature α and β are constants. Then the dimensions of β will be -

- (1) $[M^0LT^0]$
- (2) $[M^2LT^2]$
- (3) $[MLT^{-2}]$
- (4) $[ML^2 T^{-2}]$

Ans.[3]

Sol. given : $\operatorname{work} = \alpha \cdot \beta^2 \cdot e^{-\frac{x^2}{a \cdot K \cdot T}}$

k = boltzmann constant

T = temperature

x = displacement

we know that, $\frac{x^2}{\alpha . k. T}$ = dimensionless

$$\begin{bmatrix} \frac{\mathbf{x}^2}{\alpha, \mathbf{K}, \mathbf{T}} \end{bmatrix} = \begin{bmatrix} \mathbf{M}^0 & \mathbf{L}^0 & \mathbf{T}^0 \end{bmatrix}$$
$$\begin{bmatrix} \alpha \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{L}^2}{\mathbf{K}, \mathbf{T}} \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} \mathbf{K} \end{bmatrix} = \begin{bmatrix} \mathbf{M}^1 & \mathbf{L}^2 & \mathbf{T}^{-2} & \mathbf{K}^{-1} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{T} \end{bmatrix} = \begin{bmatrix} \mathbf{K} \end{bmatrix}$$

Guess Paper www.leare2i.co.in

$$\Rightarrow [\alpha] = \left[\frac{L^2}{M^1 L^2 T^{-2} K^{-1} \times K}\right] \Rightarrow [\alpha]$$

$$= [M^{-1} T^2]$$

$$\Rightarrow \omega = \alpha \cdot \beta^2$$

$$\Rightarrow \frac{[M^1 L^1 T^{-2}][L^{-1}]}{[M^{-1} T^2]} = [\beta^2] = [M^2 L^2 T^{-4}]$$

$$[\beta] = [MLT^{-2}]$$

Q3. Match the LIST-I with LIST-II

	LIST-I		LIST-II
A.	Boltzmann constant	1.	$ML^2 T^{-1}$
В.	Coefficient of	II.	$MLT^{-3} K^{-1}$
	viscosity		
C.	Planck's constant	III.	$ML^2 T^{-2} K^{-1}$
D.	Thermal	IV.	$ML^{-1} T^{-1}$
	conductivity		

Choose the correct answer from the options given below:

- (1) A-III, B-IV, C-I, D-II
- (2) A-II, B-III, C-IV, D-I
- (3) A-III, B-II, C-I, D-IV
- (4) A-III, B-IV, C-II, D-I

Sol. (A)
$$[k] = \frac{PV}{NT} = \frac{ML^2 T^{-2}}{K} = ML^2 T^{-2} K^{-1}$$

(B)
$$[\eta] = \frac{F}{6\pi rv} = \frac{MLT^{-2}}{L^2 T^{-1}} = ML^{-1} T^{-1}$$

(C) [h] =
$$\frac{E}{f} = \frac{ML^2 T^{-2}}{T^{-1}} = ML^2 T^{-1}$$

Ans.[1]
Sol. (A)
$$[k] = \frac{PV}{NT} = \frac{ML^2 T^{-2}}{K} = ML^2 T^{-2} K^{-1}$$
(B) $[\eta] = \frac{F}{6\pi rv} = \frac{MLT^{-2}}{L^2 T^{-1}} = ML^{-1} T^{-1}$
(C) $[h] = \frac{E}{f} = \frac{ML^2 T^{-2}}{T^{-1}} = ML^2 T^{-1}$
(D) $\frac{dQ}{dt} = k \frac{AdT}{dx}$

$$k = \frac{(ML^2 T^{-3})L}{L^2 \cdot K} = MLT^{-3} K^{-1}$$

Q4. The dimension of $\sqrt{\frac{\mu_0}{\epsilon_0}}$ is equal to that of

(μ_0 = Vacuum permeability and ϵ_0 = Vacuum permittivity)

- (1) Voltage
- (2) Capacitance